Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 1 of 12

PostGIS — Data Audit Triggers

In this blog we will explore adding triggers into a PostGIS database to monitor the changes
being made to a PostGIS table via QGIS.

This blog is inspired by the commonly asked question at many of my pre-sales meetings,
where | am illustrating shared project working - integrating Open Source GIS and Autodesk
BIM applications with one source of truth via a PostGIS database.....

Q - Are you able to track the data changes made in QGIS, webGlS, Infraworks, Map3D?

.... and while this wasn’t something that | had implemented before myself, | understood its
importance to Data Controllers, who need to understand how their assets have evolved and
what changes have occurred to environmental, social, and economic datasets within their
projects.

So, my answer has always been yes of course it can! it’s a database and you can do anything

in a database

However, | thought it was time to set aside a little bit of RnD and prove this to myself and
develop a live working example to really demonstrate the power of storing your assets and
spatial information within a spatial database, such as PostGIS.

Shrewsbury Utility Data:

In this example, we are using a Utility Pipeline dataset in Shrewsbury, England.

Layers
CH®TE-BAO
v & [rostais

o AUTODESK.
‘ www.cadline.co.uk ‘03. www.cadlinecommunity.co.uk APIatinum Partner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 2 of 12

These assets were formerly locked down within Autodesk Map3D, until we undertook a
MAPEXPORT command and created a Shapefile. We then uploaded that Shapefile into a
PostGIS database, on our public facing TryMapThat server. This created a table called ‘utility’,
which had geometry, a layer type, height value and a unique id.

Data Qutput Explain Messages Query History
geom layer height fid

4 Egeometry character varying (254) numeric [PK] character varying (100}
432 | 010500002... | LINE_ELEC 5 | {f200d657-3227-4602-bb4a-cb3a...
433 010500002... | LINE_ELEC 5| {f303e823-2baa-4f76-aadc-90ch...
434 010500002... | LINE_ELEC 5 | {f30c7ff7-60ab-4952-814a-f0bdfg...
435 010500002.. | LINE_SWS 5| {f33b4857-05ef-43b4-bad1-0b62...
436 | 010500002.. | LINE_CCTV 5| {f3534a4b-3ec2-497e-a571-8537...
437 | 010500002... | LINE_ELEC 5| {f4d738ce-e110-49094-380b-023e...
438 | 010500002.. | LINE_CCTV 5 | {f544del5-80f2-4b6fe-B695-d444c...
420 | ndANsANNnT | LIKE ELEC | IfEOSTaAf ~CFA ATFR RANN OAOSE

| utilise this spatial data to demonstrate an example of shared project working, where the
same dataset is being accessed, and indeed edited, via several applications, including; QGIS,
MapThat webGIS, Map3D and Infraworks. As one application makes a change to the
underlying data, all users will see those changes live, without the need to export, translate
and reimport datasets. Feel free to view that blog using the link below:

https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-
Working-Implementing-GIS-Interoperability

So, based on my pre-sales feedback and for my own curiosity | decided to research how simple
it is to create database triggers in PostGIS to record these data changes. Below | will describe
the steps which | undertook to create database triggers so that the next time that the data
was updated we can track those changes and provide an Audit history.

o AUTODESK.
‘ www.cadline.co.uk ‘03. www.cadlinecommunity.co.uk APIatinum Partner

Consulting Specialized

https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-Working-Implementing-GIS-Interoperability
https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-Working-Implementing-GIS-Interoperability

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 3 of 12

Step 1 - Index Existing Table:

Firstly, ensure that your spatial table has an index. The table that we are using is a pipeline
table called utility.

CREATE INDEX idx_utility_geom ON public.utility USING GIST(GEOM);

DynamicMaps on postgres@Postgre5QL 9.5

1 CREATE INDEX Hddx_utility_geom ON public.utility USING GIST(GEOM);

Data Output Explain Messages Query History
CREATE INDEX

Query returned successfully in 112 msec.

~ » 4 Constraints
- 2 Indexes (2)

- 45 idx_utility_geom

~ 45 sidx_utility_geom

Step 2 — Copy the Spatial Table (utility) to create a History Table (utility_history):

Next, we will need a database table to write the data change records into. The simplest way
to do this is to create a copy of the existing spatial table:

CREATE TABLE utility_history AS

TABLE utility;

And then to delete all the existing records from the new table:
TRUNCATE utility_history;

DELETE FROM utility_history;

o AUTODESK.
‘ www.cadline.co.uk @. www.cadlinecommunity.co.uk A

Platinum Partner
Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 4 of 12

DynamicMaps on pi

TRUNCATE
Z DELETE FROM utility_history;

Data Output Explain Messages Query History
DELETE @

Query returned successfully in 90 msec.

Data Output Explain Messages Query History

id geom layer height
4 numeric | geometry character varying (254) bigint

Step 3- Alter the Schema of the History Table:

Next, we will need to alter the design of the new utility_history table to add some extra fields
which will be used to record the changes we make. Into the Utility History table we will add
a created timestamp, created_by, deleted timestamp, deleted_by, updated_timestamp and
updated_by.

ALTER TABLE utility_history ADD COLUMN created timestamp;
ALTER TABLE utility_history ADD COLUMN created_by varchar(50);
ALTER TABLE utility_history ADD COLUMN deleted timestamp;
ALTER TABLE utility_history ADD COLUMN deleted_by varchar(50);
ALTER TABLE utility_history ADD COLUMN updated timestamp;
ALTER TABLE utility_history ADD COLUMN updated_by varchar(50);

ALTER TABLE utility_history ADD COLUMN modified boolean;

o AUTODESK.
. www.cadline.co.uk @. www.cadlinecommunity.co.uk APIatinumPartner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 5 of 12

Data Output Explain Messages Query History

id geom layer height created created_by deleted deleted_by modified

4 numeric geometry character varying (254) bigint timestamp without time zone character varying (50) timestamp without time zone character varying (30} boolean
1 105 | 010500002... LINE_GSV 5| [null] [null) [null] [null] [null)
2 249 010500002... LINE_UNID 3| [nulll [null] [nulll [null] [nuil]
3 39| 010500002... ' LINE.WATER 5| [null] [null) [null] [null] [null)
4 11| 010500002... LINE_GAS 5| [null] [null] [null] [null] [null]
5 13| 010500002... ' LINE_DUCT 5/ [null] [null] [null] [null] [null]
6 14| 010500002... | LINE_ELEC 5| [null] [null) [null] [null] [null)
7 15| 010500002... LINE_GSV 3| [null [null] [nulll [null] [null]
3 16| 010500002... | LINE_GSV 5| [null] [null) [null] [null] [null)
9 12| 010500002... | LINE_DATA 5| [null] [null] [null] [null] [null]

Step 4- Alter the Schema of the History Table:

In this step we need to add an Index to the updated utility _history table.

CREATE INDEX idx_utility_history_geom ON public.utility _history USING GIST(GEOM);

CREATE INDEX idx_utility_history_geom ON public.utility_history USING GIST(GEOM);

(ST N T

Data Qutput Explain Messages Query History
CREATE INDEX

Query returned successfully in Bl msec.

=N £ urtility_history
- % Columns=
" ¥ 4 Constraints

£ 2, Indexes (1),

s5a idw_utility_history_geom

: o . : AUTODESK.
. www.cadline.co.uk @. www.cadlinecommunity.co.uk Platinum Partner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 6 of 12

Step 5 — Create a Database Trigger (Utility_history_tracker):

Now we can create some triggers in the database. The first Trigger that we create will be at
database level. It will run anytime that PostGIS sees that there has been a change to the Utility
Table, and uses a series of Else If queries to understand if the change is an Update, Insert or
Deletion. It is used to insert into these a record of changes into the utility_history table.

CREATE OR REPLACE FUNCTION public.utility_history_tracker()
RETURNS trigger AS
Sutility_history_tracker$
BEGIN
IF (TG_OP ="INSERT') THEN
INSERT INTO public.utility_history
(geom, layer, height, fid, created, created_by, modified)
VALUES
(NEW.geom, NEW.layer, NEW.height, NEW.fid, current_timestamp, current_user, FALSE);
RETURN NEW;
ELSIF (TG_OP = 'UPDATE') THEN
UPDATE public.utility_history
SET updated = current_timestamp, updated_by = current_user, modified = TRUE
WHERE deleted IS NULL and fid = OLD.fid;
INSERT INTO public.utility_history
(geom, layer, height, fid, updated, updated_by, modified)
VALUES
(NEW.geom, NEW.layer, NEW.height, NEW.fid, current_timestamp, current_user, FALSE);
RETURN NEW;
ELSIF (TG_OP = 'DELETE') THEN
UPDATE public.utility _history
SET deleted = current_timestamp, deleted_by = current_user

WHERE deleted IS NULL and fid = OLD.fid;

o AUTODESK.
. www.cadline.co.uk @. www.cadlinecommunity.co.uk APIatinumPartner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 7 of 12

RETURN NULL;
END IF;
END;
Sutility_history_tracker$
LANGUAGE plpgsql VOLATILE

COST 100;

Once the SQl script has been ran, you will now have created a Database level trigger.

’ =} postgis_cache_bhox{)

i {=}update_imr_timestamp_column{)

Step 6 — Create a Table Trigger (trg_utility_history_tracker):

The second Trigger that we create will be for the Utility Table. This trigger will check for any
Insertions, Deletions or Updates into the Utility Table, and when a change is made it will
execute the Utility_History_Tracker trigger at Database level to update the history table.

DROP TRIGGER IF EXISTS trg_utility_history_tracker ON public.utility;

CREATE TRIGGER trg_utility_history_tracker AFTER INSERT OR UPDATE OR DELETE ON
public.utility

FOR EACH ROW EXECUTE PROCEDURE public.utility_history_tracker();

5 B - Q. ® B 8 @ Y -[Noimt -] ¥| . &

DynamicMaps on postgres@PostgreSQL 9.5

. DROP TRIGGER IF EXISTS trg_utility_history_tracker ON public.utility;
2 CREATE TRIGGER trg_utility_history_tracker AFTER INSERT OR UPDATE OR DELETE ON public.utility
FOR EACH ROW EXECUTE PROCEDURE public.utility_history_tracker();

Data Output Explain Messages Query History
CREATE TRIGGER

Query returned successfully in 98 msec.

: o . : AUTODESK.
‘ www.cadline.co.uk @. www.cadlinecommunity.co.uk Platinum Partner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 8 of 12

Once the SQl script has been ran, you will now have created a Table level trigger in the Utility table.

9 B9 wiliey
= % Columns
[» 4 Constraints

Data Qutput Explain Messages Query History

L=
T Indexes CREATE TRIGGER

; I‘:':}-J:-)Triggersﬂ}i Query returned successfully in 98 msec.

- :-v trg_utility_history_tracker

Step 7 — Test that the Triggers work:

To test to see if the Triggers are successfully recording the data changes we will make 3
different types of edit.

(a) Attribute Edit:

Using the PostGIS SQL Tool, we can use a script to update an existing record and change the
layer type value.

Currently the pipeline with id {0da28ele-42e0-40bd-a49b-fcd2b38591bc} is of type LINE_BT.

e c e OO N ; ﬁ

Identify Results n .'.
O BHE %06
Feature Value ;
v utlity H

v fid {0da28e 1e-42e0-40bd-a49b-fcd 2h3859 1bc}

> (Derived)
» (Actions)
{0da28e 1e-42e0-40bd-a43b-fcd 263859 1bc)
layer LINE_BT
height 5
> undergroundutilitylinesshp
s 2 OpenStreetMap
p—
=l
"(43 e b, |
sttt .. Pengwern
© Pavillion ‘-S:.\m Club
. Pennge'm .
Boat/ e
frf‘l’l\ Club
00000
: U . _ AUTODESK.
www.cadline.co.uk ‘5}. www.cadlinecommunity.co.uk Platinum Partner

Consulting Specialized

If we now run the following SQL script within PostGIS:
Update

public."utility" utility

set layer = 'LINE_WATER'
WHERE

fid = '{0da28ele-42e0-40bd-a49b-fcd2b38591bc}’;

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 9 of 12

TryMapThat on postgres@TryMapThat

. Update

2 public."utility" utility
set layer = "LINE_WATER'

4 WHERE

3 fid = '{8da2Bele-42e@-40bd-a49b-fcd2b38591bc}";

Data Qutput Explain Messages Query History
UPDATE 1

Query returned successfully im 136 msec.

the same record will be updated to now be LINE_WATER.

\(33‘0 // ' !
e P < i :
Identify Results n
O RA Y% 0 e
Feature Value
~ utiity
v fid {0da28e1=-42e0-40bd-a43b-fcd 2b3859 1bc}
> (Derived)
i > (Actions)
fid {0da28e 1e-42e0-40bd-a49b-fcd2b3859 1hc}
layer LINE_WATER
height 5
> undergroundutilitylinesshp
> 2 OpenStreetMap
Fp—
| N
- 5 Y 1

‘ www.cadline.co.uk

o _ .
@. www.cadlinecommunity.co.uk

{\ AUTODESK.

Platinum Partner
Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 10 of 12

If we now check the utility_history table we can see that a change log record has been added,
which records that for this record ID, there has been an update of the layer field to be
LINE_WATER, and it also records the date/time and user that made the update (in this case
postgres).

Data Output Explain Messages Query History

fid geom layer height updated updated_by
A character varying geometry character varying (254) bigint timestamp without time zone character var
1 | {0da28ele-42e0-40b.. | 010500002.. LINE_WATER 5/]2018-03-19 16:39:41.890168 postgres
Insert New Records:

Using QGIS, we can add a new feature and see that change to the utility table added into the
utility_history table as our triggers create an audit history automatically.

Tip —when inserting records via QGIS you can use the layer properties — Attributes Form —to
apply a Unique Identifier as a default value when updates are made to the database table!

) Expression Disleg 7 * i

Expression Function Editor

= [T =1 = 1wl |[3]|[w] [searn a function uuid

uuid() | |2 Operators || Generates a Universally Unigue

¥ Record and Attributes Identifier (UUID) Tor each row using
attibute the Qb . methad. Each
scurrentfeatre UUID I5 38 characters long.

gat_featire_by_jd Syntax
sd

wuid £}
is_selactad
Fium_sedected Examples |
represent_value
wid * uuid() = *{Obd2fE0L=
¥ Sﬂ'ﬂﬂ £157-daEd-S€af- I
> Variables d4badeb3Ecall”

v Recent (generic) . [

Co] ama | o |
]] Unigue Enforce unique constraint
Expression [] [E
[Enforce expression constraint

Output preview: "{2eSeaetf-fdfc-4f83-8650- 1306 39300bacs]’

Defaults

Defauit vakue | wuid) alle
Preview (SnBoibc-AnI b aaF AR 1636061
(] Apply default value on update

Style ™ oK Cancel Apply Help

o AUTODESK.
‘ www.cadline.co.uk @. www.cadlinecommunity.co.uk APIatinumPartner

Consulting Specialized

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 11 of 12

This means that once we have digitised a new pipeline into the utility table, the attribute
form will automatically create a unique id for the FID value.

Hill

QoA .
|

utility - Feature Attributes n

 fd | {510950b5-8b5 1-4e15-a5e5- 1050238696 5} a|v
laver [LINE_ELEC a |
height [|

Vi
/ / stow *.. Pengwern
¢~ Pavillion “-Boat Club
- Pengw“e‘m\
Boat’
Oldham's P A club

Once that insertion has been saved in QGIS, if you now return to PostGIS and refresh the

utility_history table, we can see that a new record has been added, and the created and
created_by fields have been updated.

DataOutput Explain Messages Query History

fid geom layer [EENS reated deleted deleted_by

4 charactervarying geometry character varying (254) | bigint amp without time zone timestamp without time zone character varying
1 {0daZB8ele-42e0-40b.. 010500002.. LINE_WATER 5| [null] [nuli] [null] [null]

2 {610950b6-8b81-del.. | 010500002.. | LINE_ELEC 5|2018-03-19 16:15:18.759545

postgres [null] [null]

Delete Records:

Finally, we will delete a record and check that we are tracking this change via our triggers into
the utility_history table. We can either make the deletion via QGIS, or simply run the SQL
command below, using the correct ID as required.

DELETE FROM public."utility"

WHERE fid = {610950b6-8b81-4e18-a5e8-1060e3889485};

Platinum Partner
Consulting Specialized

o AUTODESK.
‘ www.cadline.co.uk @. www.cadlinecommunity.co.uk A

Blog

Reference: PostGIS— Data Audit Triggers
By David Crowther
Page 12 of 12

1 DELETE FROM public."utility"
Z WHERE fid = '{610950b5-8b81-4el8-a5eB-1060e3889485}";

Data Qutput Explain Messages Query History
DELETE 1

Query returned successfully in 94 msec.

Checking the utility_history table we can see that the change has been recorded, where the
deleted and deleted_by values have been updated to reflect the change to that record.

DataOutput Explain Messages Query History

fid geom layer height created created_by C ed de updated
4 character varying geometry character varying (bigint timestamp with character varyi QiR el RN G S EEL T char. 50) timestamp without 1j
1 {0da28ele-42e0-40b... 010500002.. LINE_WATER 5| [null] [null] [null] [null] 2018-03-19 16:07:1
2 {610950b6-8b81-del... 010500002.. LINE_ELEC 5/ 2018-03-19.. | postgres 2018-03-19 16:19:31.199902 postgres [null]

However, currently the triggers | am using will only show a deletion for a record that has
already been inserted into the history table — via an Update or an Insert.

..... ,50 my next RnD will be to see if | can capture deletions on previously non edited records.!

Many thanks to the following links which helped me research creating triggers in PostGIS:

e https://geosymp.com/tracking-history-in-postgis-databases-with-triggers/
e https://stackoverflow.com/questions/12577004/what-does-language-plpgsql-volatile-mean

o AUTODESK.
‘ www.cadline.co.uk @. www.cadlinecommunity.co.uk APIatinumPartner

Consulting Specialized

https://geosymp.com/tracking-history-in-postgis-databases-with-triggers/
https://stackoverflow.com/questions/12577004/what-does-language-plpgsql-volatile-mean

