

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 1 of 12

PostGIS – Data Audit Triggers

In this blog we will explore adding triggers into a PostGIS database to monitor the changes

being made to a PostGIS table via QGIS.

This blog is inspired by the commonly asked question at many of my pre-sales meetings,

where I am illustrating shared project working - integrating Open Source GIS and Autodesk

BIM applications with one source of truth via a PostGIS database…..

Q – Are you able to track the data changes made in QGIS, webGIS, Infraworks, Map3D?

…. and while this wasn’t something that I had implemented before myself, I understood its

importance to Data Controllers, who need to understand how their assets have evolved and

what changes have occurred to environmental, social, and economic datasets within their

projects.

So, my answer has always been yes of course it can! it’s a database and you can do anything

in a database 😊

However, I thought it was time to set aside a little bit of RnD and prove this to myself and

develop a live working example to really demonstrate the power of storing your assets and

spatial information within a spatial database, such as PostGIS.

Shrewsbury Utility Data:

In this example, we are using a Utility Pipeline dataset in Shrewsbury, England.

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 2 of 12

These assets were formerly locked down within Autodesk Map3D, until we undertook a

MAPEXPORT command and created a Shapefile. We then uploaded that Shapefile into a

PostGIS database, on our public facing TryMapThat server. This created a table called ‘utility’,

which had geometry, a layer type, height value and a unique id.

I utilise this spatial data to demonstrate an example of shared project working, where the

same dataset is being accessed, and indeed edited, via several applications, including; QGIS,

MapThat webGIS, Map3D and Infraworks. As one application makes a change to the

underlying data, all users will see those changes live, without the need to export, translate

and reimport datasets. Feel free to view that blog using the link below:

https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-

Working-Implementing-GIS-Interoperability

So, based on my pre-sales feedback and for my own curiosity I decided to research how simple

it is to create database triggers in PostGIS to record these data changes. Below I will describe

the steps which I undertook to create database triggers so that the next time that the data

was updated we can track those changes and provide an Audit history.

https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-Working-Implementing-GIS-Interoperability
https://www.cadlinecommunity.co.uk/hc/en-us/articles/115003797389-Shared-Project-Working-Implementing-GIS-Interoperability

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 3 of 12

Step 1 - Index Existing Table:

Firstly, ensure that your spatial table has an index. The table that we are using is a pipeline

table called utility.

CREATE INDEX idx_utility_geom ON public.utility USING GIST(GEOM);

Step 2 – Copy the Spatial Table (utility) to create a History Table (utility_history):

Next, we will need a database table to write the data change records into. The simplest way

to do this is to create a copy of the existing spatial table:

CREATE TABLE utility_history AS

TABLE utility;

And then to delete all the existing records from the new table:

TRUNCATE utility_history;

DELETE FROM utility_history;

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 4 of 12

Step 3– Alter the Schema of the History Table:

Next, we will need to alter the design of the new utility_history table to add some extra fields

which will be used to record the changes we make. Into the Utility History table we will add

a created timestamp, created_by, deleted timestamp, deleted_by, updated_timestamp and

updated_by.

ALTER TABLE utility_history ADD COLUMN created timestamp;

ALTER TABLE utility_history ADD COLUMN created_by varchar(50);

ALTER TABLE utility_history ADD COLUMN deleted timestamp;

ALTER TABLE utility_history ADD COLUMN deleted_by varchar(50);

ALTER TABLE utility_history ADD COLUMN updated timestamp;

ALTER TABLE utility_history ADD COLUMN updated_by varchar(50);

ALTER TABLE utility_history ADD COLUMN modified boolean;

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 5 of 12

Step 4– Alter the Schema of the History Table:

In this step we need to add an Index to the updated utility_history table.

CREATE INDEX idx_utility_history_geom ON public.utility_history USING GIST(GEOM);

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 6 of 12

Step 5 – Create a Database Trigger (Utility_history_tracker):

Now we can create some triggers in the database. The first Trigger that we create will be at

database level. It will run anytime that PostGIS sees that there has been a change to the Utility

Table, and uses a series of Else If queries to understand if the change is an Update, Insert or

Deletion. It is used to insert into these a record of changes into the utility_history table.

CREATE OR REPLACE FUNCTION public.utility_history_tracker()

RETURNS trigger AS

$utility_history_tracker$

 BEGIN

 IF (TG_OP = 'INSERT') THEN

 INSERT INTO public.utility_history

 (geom, layer, height, fid, created, created_by, modified)

 VALUES

 (NEW.geom, NEW.layer, NEW.height, NEW.fid, current_timestamp, current_user, FALSE);

 RETURN NEW;

 ELSIF (TG_OP = 'UPDATE') THEN

 UPDATE public.utility_history

 SET updated = current_timestamp, updated_by = current_user, modified = TRUE

 WHERE deleted IS NULL and fid = OLD.fid;

 INSERT INTO public.utility_history

 (geom, layer, height, fid, updated, updated_by, modified)

 VALUES

 (NEW.geom, NEW.layer, NEW.height, NEW.fid, current_timestamp, current_user, FALSE);

 RETURN NEW;

 ELSIF (TG_OP = 'DELETE') THEN

 UPDATE public.utility_history

 SET deleted = current_timestamp, deleted_by = current_user

 WHERE deleted IS NULL and fid = OLD.fid;

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 7 of 12

 RETURN NULL;

 END IF;

 END;

$utility_history_tracker$

LANGUAGE plpgsql VOLATILE

COST 100;

Once the SQl script has been ran, you will now have created a Database level trigger.

Step 6 – Create a Table Trigger (trg_utility_history_tracker):

The second Trigger that we create will be for the Utility Table. This trigger will check for any

Insertions, Deletions or Updates into the Utility Table, and when a change is made it will

execute the Utility_History_Tracker trigger at Database level to update the history table.

DROP TRIGGER IF EXISTS trg_utility_history_tracker ON public.utility;

CREATE TRIGGER trg_utility_history_tracker AFTER INSERT OR UPDATE OR DELETE ON

public.utility

FOR EACH ROW EXECUTE PROCEDURE public.utility_history_tracker();

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 8 of 12

Once the SQl script has been ran, you will now have created a Table level trigger in the Utility table.

Step 7 – Test that the Triggers work:

To test to see if the Triggers are successfully recording the data changes we will make 3

different types of edit.

(a) Attribute Edit:

Using the PostGIS SQL Tool, we can use a script to update an existing record and change the

layer type value.

Currently the pipeline with id {0da28e1e-42e0-40bd-a49b-fcd2b38591bc} is of type LINE_BT.

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 9 of 12

If we now run the following SQL script within PostGIS:

Update

 public."utility" utility

 set layer = 'LINE_WATER'

WHERE

 fid = '{0da28e1e-42e0-40bd-a49b-fcd2b38591bc}';

the same record will be updated to now be LINE_WATER.

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 10 of 12

If we now check the utility_history table we can see that a change log record has been added,

which records that for this record ID, there has been an update of the layer field to be

LINE_WATER, and it also records the date/time and user that made the update (in this case

postgres).

Insert New Records:

Using QGIS, we can add a new feature and see that change to the utility table added into the

utility_history table as our triggers create an audit history automatically.

Tip – when inserting records via QGIS you can use the layer properties – Attributes Form – to

apply a Unique Identifier as a default value when updates are made to the database table!

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 11 of 12

This means that once we have digitised a new pipeline into the utility table, the attribute

form will automatically create a unique id for the FID value.

Once that insertion has been saved in QGIS, if you now return to PostGIS and refresh the

utility_history table, we can see that a new record has been added, and the created and

created_by fields have been updated.

Delete Records:

Finally, we will delete a record and check that we are tracking this change via our triggers into

the utility_history table. We can either make the deletion via QGIS, or simply run the SQL

command below, using the correct ID as required.

DELETE FROM public."utility"

WHERE fid = ‘{610950b6-8b81-4e18-a5e8-1060e3889485}’;

 www.cadline.co.uk www.cadlinecommunity.co.uk

Blog
Reference: PostGIS– Data Audit Triggers

By David Crowther

Page 12 of 12

Checking the utility_history table we can see that the change has been recorded, where the

deleted and deleted_by values have been updated to reflect the change to that record.

However, currently the triggers I am using will only show a deletion for a record that has

already been inserted into the history table – via an Update or an Insert.

…..,so my next RnD will be to see if I can capture deletions on previously non edited records.!

Many thanks to the following links which helped me research creating triggers in PostGIS:

• https://geosymp.com/tracking-history-in-postgis-databases-with-triggers/

• https://stackoverflow.com/questions/12577004/what-does-language-plpgsql-volatile-mean

https://geosymp.com/tracking-history-in-postgis-databases-with-triggers/
https://stackoverflow.com/questions/12577004/what-does-language-plpgsql-volatile-mean

